AsTMa* TM Engineering

Robert Barta
PT information systems

rho @bigpond.net.au

Apologies/Disclaimers

NOT a proposal for a standard

— t00 many open 1ssues
set of 1deas which may make sense

— or not, choose yourself

slides produced with PowerPoint
— violates all BCP of knowledge engineering

Larry Wall:

— all language designers must be arrogant

TM Engineering

this 1s NOT reasoning
this 1s NOT philosophy about “things™

this 1s NOT “social meaning”

tasks

— authoring, maintaining
— constraining, filtering
— retrieval, query

AsTMa* Language Family

e common formal foundation

— maplets, tau-algebra
e expressions: (M1 + M2) * C * Q

— reasoning ABOUT the language possible
e optimization

— relationship to outside semantics
* RDF, XBRL, ...

e common notation and concepts
— natural migration path for TM users

AsTMa* Pyramid

e AsTMa?

— query, ontology transformation

e AsTMa!

— constraints, ontology definition, filter

e AsTMa=

— factual maps, optimized for human authoring

AsTMa= authoring

this 1s a topic

astma-equal i1s-a tm-authoring-language

bn: AsTMa=

oc (homepage): http://astma.it.bond.edu.au/
in (comment): not for XML lovers

this 1s an association
(is-part-of)

whole: astma-family
part: astma-equal

AsTMa= Features

define topics, associations

scoping of bn, oc, 1n, and associations
— only one scope

typing of oc, 1n, associations

— bn to be added

reification of associations [topics ? |
no merging facility

— tau-algebra

AsTMa! Example

forall [fa
bn : /AsTMa/1 |
=> exist |
(1s-emplyed)
emp : $a
employer: bond]

ts [$a

oc (homepage) @ rho :

]

and
exists [(is-part-of)

XXX

AsTMa! Objectives

e constraint language
— validation: M * C -> {true, false}
— filtering: M * C = M"
e ontology definition language
— vocabulary (AsTMa=)
— taxonomy, type system (AsTMa=)
— (app-specific) constraints (AsTMal)

AsTMal! Objectives (cont’d)

e Ontology management
—OR: 01 +02

e are two ontologies compatible?
* is there a map which can conform?

— AND: O1 * 02

e does a particular map conform to both?

AsTMa! Formal Semantics

e ¢g00d to scare students

e allow to define precisely when a map
matches a constraint:
-Cl=M

e maps built from ‘maplets’

— maplet 1s association

— topics are simply characteristic tuples
* (type, scope, value)

AsTMa? Rationale (Phases)

e define a collection

— SQL: FROM table, XQuery: LET ...
e iterate over all components
— SQL: all rows, XQuery: all nodes

e filter out wanted ones

— SQL: WHERE bool-expr, XQuery: eval XPath
e generate content from matches

— SQL: SELECT ..., XQuery: ...{$x}...

AsTMa? Rationale (Pipelining)

e pipeline
— output of SQL 1s table
— output of XQuery 1s XML
* consequences
— output can be queried again
— subqueries
— optimizations

* input structure must be output structure

AsTMa’? Design Goals

e retrieval language for applications
— classical query (open iterator, iterate, close)
— embedding into XML application servers

e stand-alone ontology transformation
e ala XSLT for XML
e map M1 conforms to C1: C1 |= M1,
e transform with query Q: M1 * Q = M2
 C2 |=M2, 1.e. mediate between ontologies C1, C2

AsTMa? Influences

SQL (tuple select, WHERE)

XQuery (LET, functions, RETURN, ...)
Prolog/Datalog (matching, backtrack, ...)
Perl & Friends

and pretty much everything good from Lars

AsTMa? Example

 find all operas, return them one by one

IN http://whereever/opera.xtm
WHERE
exists $t [* (opera)
oc (homepgae)
RETURN
($t, $h)

: $h]

AsTMa? Example

e same but using defaults

IN http://whereever/opera.xtm
WHERE
exists [* (opera) |

AsTMa? Example

e same but now from a TM backend

IN tm://serverl/opera
WHERE
exists [* (opera) |

AsTMa? Example

e same but using a variable first

LET $m := tm://serverl/opera
IN $m WHERE
exists [* (opera) |

AsTMa? Example

e enriching a map with another map
LET $m := tm:opera
IN $m + tm:blues # merging maps

e enriching with ontological knowledge
LET $m := tm:opera

LET $0 := tm:music

IN $m + %o

AsTMa? Example

 why query at all?
LET $m := ...

LET %o := ...
RETURN

$m + $o

 for the impatient:
RETURN ... + ...

AsTMa? Example

e generate XML code

<tosca>
IN tm:opera
WHERE
exists $t [tosca]
RETURN
FOR $b IN $t/baseName
<name>{$b}</name>
</tosca>

AsTMa? Example

e generate XTM code
<topicMap>
IN
WHERE
RETURN
{as_xtm($t)}
</topicMap>

AsTMa? Functions

e define a function

function enrich ($o : ontology) {
RETURN tm:opera + $o

}

e invoke a function
IN enrich(http://ontologies.org/music.atm)

AsTMa? Sorting

e sorting using RETURN

IN tm:opera
WHERE
exists $t [* (opera) |
RETURN # tuple mode
({$t/baseName[scope = “#pravi”’]})
SORT BY
$t/baseName[scope = “#sort”]

AsTMa? Example

 sorting in FOR
IN tm:opera
WHERE
exists $t [* (opera) |
RETURN # tuple mode again
FOR $o IN $t/topic
({$t/baseName[scope =“#pravi”’]})
SORT BY
$o/baseName[scope = “#sort”]

AsTMa?? Example (Negation)

e all operas which have no composer

IN tm:opera
WHERE
exists [$o (opera)]
AND
not exists [(is-composer-of)
opus: $o]

AsTMa? Example (Subquery)

e compute the statistics

LET $m := tm:opera

LET $o := IN $m WHERE exists [* (opera)]+

LET $s := $o0 * STATS

RETURN $s

* for the impatient Perl hacker

RETURN (IN tm:opera WHERE exists [* (opera)]+)

STATS

AsTMa’? Summary

LET assignments, tau expressions
WHERE filters

— AsTMal! constraint, matches to a submap,
— bind variables

RETURN

— constructor generates content, uses variables
— XML, raw topicMap, tuples

FUNCTIONS

AsTMa? Controlled Extensions

for vendors to distinguish their products

specialized map operators
— STATS, transitive hulls, other graph operations

specialized ontologies
— cartridges for application domains (biology)

specialized inference rules (transitivity, ...)
specialized reasoning ??

AsTMa? and Taglibs

<astma:query>
<operas>
<astma:in>tm:opera</astma:in>
<astma:where>..... </astma:where>
<astma:return>...
<opera>{$b}</opera>
</astma:return>
</operas>
</astma:query>

AsTMa? Language Bindings

my $tm = new XIM (url => ‘tm:opera’);
my $g = new XIM (text =>
‘WHERE
exists [* (opera)]
RETURN’) ;
my $it = $g->execute ($tm);
while (my $s = $it->fetch) {
print $xtmp->(‘baseName...’, $s);
} # using XTMPath to access a component

AsTMa? Language Bindings

my $g = new XIM (text =>

‘WHERE
exlists [* (opera)
bn: $bn
oc: $oc |

RETURN ($bn, $oc)’);
my $it = $g->execute ($tm);
while (my ($b, $0) = $it->fetch) {
print $b, $o;
}

But [want XML, XML, XML

e encode tau expressions in XML

e encode AsTMa! as XML
— XAsTMa

e use X(TM)Path as (shorthand) notation

Architecture (dedicated)

how to integrate lower-order entropy data?
~ SQL, XML

how to integrate RDF?

virtual maps

— bringing all into TM space

— query there

— query will be transparently split

NO knowledge of this in the query

Architecture (generic)

IN tm:opera + rdbms:mysql:fans + xml:db:books
WHERE
exists [sin: skdsfdkjs]
AND
exists [(fans) - fan: $fid - opera: $o]
AND
exists [(is-xpath)
xpath: books/book[title=“$b”]/isbn
value: $isbn
RETURN
($0, $b, $fid, $isbn)

AsTMa* Status

AsTMa=: stable, implemented
AsTMal!: stable, proof of concept

— transformation into Prolog
— no experiences yet (read: not student-proof)

AsTMa?

— vaporware yet, NOTHING 1implemented
— estimates: only over my dead body!

AsTMa+: speculation only

AsTMa* Formal Considerations

e tau algebra 1s a mathematical model
— defines the operations * and +
— on maps, constraints and queries (and updates)

e expressiveness?
— based on AsTMa!
— can be implemented 1n Prolog
— but looks like a much simpler logic (DL?)

e anyway HUGE theories are available

AsTMa* Conclusions

no need for a transformation language
no need for artificial predicates

everything 1s treated TMish

queries and constraints can be factorized
integration with other databases feasible
same notation throughout

One notation to write them all,

One to retrieve them,

One notation to constrain them all
And with its semantics bind them

In the Land of London where the
Fogs do lie.

